VertitimeX Technologies

Pandas Scaling to Large Datasets.

Pandas provides data structures for in-memory analytics, which makes using pandas to analyze datasets that are larger than memory datasets somewhat tricky. Even datasets that are a sizable fraction of memory become unwieldy, as some pandas operations need to make intermediate copies.
When working with large datasets in pandas, performance can become a major bottleneck. Here are some strategies to scale pandas effectively:
  1. Use Efficient Data Types
    • Convert object columns to categorical or string
    • Use float32/int32 instead of float64/int64 if possible
    • Use pd.to_datetime() for dates to optimize performance
    df['category_column'] = df['category_column'].astype('category')
    df['int_column'] = df['int_column'].astype('int32')
    
  2. Load Data Efficiently
    a) Read Only Required Columns
                df = pd.read_csv("large_file.csv", usecols=['col1', 'col2'])
                
    b) Load Data in Chunks
                
                chunksize = 100000  # Process 100K rows at a time
                for chunk in pd.read_csv("large_file.csv", chunksize=chunksize):
                process(chunk)
                
    c) Use dtype Parameter to Reduce Memory
                    df = pd.read_csv("large_file.csv", dtype={'col1': 'int32', 'col2': 'float32'})
                
  3. Use modin.pandas for Parallel Processing
    Replace:
    import pandas as pd
                
    With:
    import modin.pandas as pd    
                
    This will automatically speed up operations by using multiple CPU cores.
  4. Use Dask for Out-of-Core Processing
    Dask allows handling large data without loading everything into memory.
    import dask.dataframe as dd
    ddf = dd.read_csv("large_file.csv")
    ddf.groupby('col1').mean().compute()  # Compute when needed
    
                
  5. Use SQLite or Parquet Instead of CSV
    a) Store & Query Large Datasets with SQLite
        import sqlite3
    conn = sqlite3.connect("database.db")
    df = pd.read_sql_query("SELECT * FROM table_name", conn)
    
                
    b) Use Parquet for Faster I/O
                df.to_parquet("large_data.parquet")
                df = pd.read_parquet("large_data.parquet")
    
    
  6. Vectorized Operations & NumPy
    Always prefer vectorized operations over loops. Bad:
    df['new_col'] = df['col1'] * 2  # OK
    for i in range(len(df)):  # Slow
    df.loc[i, 'new_col'] = df.loc[i, 'col1'] * 2
                
    Better:
                df['new_col'] = df['col1'].mul(2)  # Faster
    
    
    
  7. Drop Unused Data (Garbage Collection)
                import gc
                del df
                gc.collect()
    
    
  8. Cloud & Distributed Solutions
    • Google BigQuery + pandas: pandas-gbq
    • Spark with pandas: pyspark.pandas
    • Snowflake, DuckDB, ClickHouse for large-scale data processing
Final Thought
For datasets < 1GB, optimize pandas with modin, dtypes, and vectorization.
For datasets > 1GB, use Dask, SQLite, or Spark.